Utilisation d'une partition pour dénombrer un ensemble

Exemple d'énoncé pour comprendre :
Dans une entreprise de 120 salariés, on sait parler au moins une langue parmi l'Allemand, l'Espagnol , l'Anglais.
8 personnes parlent les trois langues,
2 parlent l'Allemand et l'Espagnol mais pas l'Anglais,
10 parlent uniquement l'Espagnol,
101 personnes parlent l'Anglais,
50 personnes parlent l'Espagnol,
52 personnes parlent l'Allemand.
On veut déterminer :

on fait le graphe correspondant (appelé diagramme de Venn)


Chaque disque correspond à un groupe de personne pratiquant une langue ( sauf le rouge)
on peut distinguer une partition de 8 ensembles
notons a, b, c, d , e, f , g, h le nombre d'éléments de chaque ensemble de cette partition, traduisons l'énoncé, on a :

Il y a c = 30 personnes parlant l'Anglais et l'Espagnol , mais pas l'Allemand.

Il y a b = 35 personnes parlant l'Anglais et l'Allemand mais pas l'Espagnol.

Il y a d = 7 personnes parlant l'Allemand uniquement.

Autre exemple : BAC STI STI Arts appliqués - Probabilités